
UiI,LA,,,h II U

SECURITY CLASSIFICATION OF THIS PAGE (n DataEnterd) READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GovT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
AFIT/CI/NR 88- q(, :".

TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Tm-GoEJ' TcoMWO A AOvCIiATEV ro.ol roml MS THESIS (0D Pr-LoUTIoU 01r (I.CIA6 L AL,-YV VJ LID T'IFJ- PEFRj
s6. PERFORMNG O'AG. REPORT NUMBER

AUTHOR(s) S. CONTRACT OR GRANT NUMBER(*)

AAV- ALuAQ JMa~j

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA a WORK UNIT NUMBERS

AFIT STUDENT AT: Arki o JA 5T r hj" UL)iV . ,l

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

1988
13. NUMBE OF PAGES

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlltnf Office) IS. SECURITY CLASS. (of this report)

AFIT/NR
Wright-Patterson AFB OH 45433-6583 UNCLASSIFIED

ISa. DECLASSI FICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTED UNLIMITED: APPROVED FOR PUBLIC RELEASE D T IC
rlELECTEI

A61_16 0 3

7. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)Q
SAME AS REPORT JD

IS. SUPPLEMENTARY NOTES Approved for Public lease: IAW AFR 190-I

LYNN E. WOLAVER C; D --
Dean for Research a ro essional fevelopmen
Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

19. KEY WORDS (Continue on reverse side it necessary and Identify by block number)

20. ABSTR CT (Continue on reverse side If necessary end Identify by block number)

ATTACHED

FOR"

DD jAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UHCLASSIFIUI

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

_, - ", -

.t , , • "" '

9Abstract
This thesis addresses enhancements to a technique for

generating test cases and modifications to an automated

system implementing the technique. This system, IOGen,

generates input/output pairs for the Common APSE Interface

Set (CAIS) and for Ada programs in general. Ada language

topics for which symbolic execution and IOGen do not address

are discussed. The detailed design for an enhanced IOGen

system is presented. A case study shows that modifications

to IOGen enhance its error detection capability. Finally,

current and future areas of research for IOGen are

presented. ., - It t -

Accesion For

NTIS (RA&I
D11C T4, U]
U:iamu,, . .d I

By......--

iii

p

IOGEN TOWARD AN AUTOMATED TOOL FOR PRODUCTION

OF RELIABLE AND VALID TEST SUITES

by

Mark Pllan Norman

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

ARIZONA STATE UNIVERSITY

May 1988

i77

IOGEN TOWARD AN AUTOMATED TOOL FOR PRODUCTION

OF RELIABLE AND VALID TEST SUITES

by

Mark Allan Norman

has been approved

May 1988

APPRO47 :

...._-_____ .Chairpe r son

Supervisory Committee

A rCCEP Eeg

De artment hai rper 4,n

N7

Abstract

This thesis addresses enhancements to a technique for

generating test cases and modifications to an automated

system implementing the technique. This system, IOGen,

generates input/output pairs for the Common APSE Interface

Set (CAIS) and for Ada programs in general. Ada language

topics for which symbolic execution and IOGen do not address

are discussed. The detailed design for an enhanced IOGen

system is presented. A case study shows that modifications

to IOGen enhance its error detection capability. Finally,

current and future areas of research for IOGen are

presented.

iiiI

Dedication

To my wife, Vonnie,

and my son, Brian.

iv

Acknowledgement

I would like to thank Dr. Timothy Lindquist for his

guidance, enthusiasm, and suDport in the preparation of this

thesis. I extend my thanks and appreciation to Dr. Kathleen

Mutch and Dr. Paul Jorgensen for their participation as

committee members. Last, but not least, I would like to

thank Vickey Wood for her hours of e'xplanation and

assistance in educating me on ALEX and AYACC.

)V

vI'

Table of Contents

List of Figures.. viii

Chapter

1. Introduction.. 1

2. Symbolic Execution and lOGen........................ 5

2.1 I/O Pairs Generation......................... 7

2.2 Assignment Statements........................ 8

2.3 IfThenElse Statements....................... 8

2.4 Looping Constructs.......................... 11

2.5 Case Statements............................. 15

2.6 Procedure Calls............................. 15

2.7 Summary...................................... 17

3. Ada Language Extensions For Symbolic Execution .. 18

3.1 Overview..................................... 19

3.2 Boolean Expressions......................... 19

3.3 Arithmetic Expressions....................... 24

3.4 Arrays....................................... 26

3.5 Attributes................................... 27

3.6 Access Types................................ 28

3.7 Undefined Variables......................... 29

3.8 Input.. 30

3.9 Discriminants............................... 31

vi

Chapter

3.10 Subtypes.................................... 32

3.11 Variant Records............................ 32

3.12 Remarks..................................... 33

3.13 Summary..................................... 33

4. Symbolic Execution Tree Package.................... 35

4.1 Overview..................................... 35

4.2 Design of the Tree Package................... 37

4.2.1 Assignment Statements................. 39

4.2.2 IfThenElse Statements...............41

4.2.3 Looping Constructs.................... 47

4.2.4 Case Statements....................... 51

4.2.5 Procedure Calls....................... 54

4.2.6 Design Wrap-Up....................... 56

4.3 Summary...................................... 57

5. Case Study... 58

6. Current and Future Research for TOGen..............61

7. Conclusion... 63

References... 65

Appendix

A. Sample Ada Program and 1/O Pairs................... 66

vii

List of Figures

Figure

1. Function ISPOSITIVE 9

2. Symbolic Execution Tree: Function ISPOSITIVE 10

3. Function TOTALPOSITIVES 13

4. Symbolic Execution Tree: Function TOTALPOSITIVES .. 14

5. Case Statement 15

6. Symbolic Execution Tree: Case Statement 16

7. Boolean Expression Input Conditions 21

8. IOGen System Configuration 36

9. Data Structures 37

10. Package Procedures 38

11. Procedure AssignmentStatement 40

12. Symbolic Execution of an Assignment Statement 41

13. Procedure Generate NewNodes 43

14. Symbolic Execution of an IfThenElse Statement 47

15. Procedure ForLoop 48

16. Symbolic Execution of a For Loop 49

17. Symbolic Execution of a While Loop 50

18. Procedure WhenClause 53

19. Symbolic Execution of a Case Statement 54

20. Procedure ProcedureCalls 55

viii

)Zc .

p
Chapter 1

Introduction

The United States Department of Defense (DoD) has

sponsored the development of the Ada programming

language. In addition, the DoD has also developed

requirements for programming environments called the Ada

Programming Support Environment (APSE). The APSE

environment provides a set of tools to support all aspects

of the Ada software lifecycle. A number of low-level

package interfaces to the underlying machine resources is

the Common APSE Interface Set (CAIS, pronounced as case)

[1]. The primary motivation for the development of the CAIS

is environment tool and data transportability. Currently,

research is being conducted at Arizona State University to

produce an Operational Definition of the CAIS (CAISOD) [111.

The APSE Evaluation and Validation (E&V) Team was

formed by the Ada Joint Program Office to initiate the

development of technology for validating the conformance of

APSE's to relevant standards and to evaluate the performance

of APSE components. Adopting CAIS as the basis for APSE's

implies other supporting needs which include a CAIS

standard, conformance policy, validation capability, and

evaluation capability. Currently, work is being conducted

to develop a CAIS Implementation Validation Capability

(CIVC) for the Standard CAIS.

2

The CAISOD will be used to aid in the construction of

the CIVC. Together with the CAIS specification, the CAISOD

will provide a software basis for creating and testing the

validation set. The source code for the CAISOD can be

analyzed using static testing techniques to identify

necessary validation tests. IOGen [8] was created to

perform this static analysis using symbolic execution [7].

Jenkins and Lindquist [9] also describe how IOGen can be

used to generate tests in a structured approach to program

testing.

IOGen was designed by Jenkins as her master's thesis at

Arizona State University [8]. IOGen performs a static

analysis of an Ada source routine and develops a set of

input/output pairs which represent all of the execution

paths through the routine. These I/O pairs are determined

through a symbolic execution of the routine. After removing

implementation dependencies from these pairs, they could

then be used to validate/test (in a black box fashion)

different implementations of the CAIS (and eventually the

CAISOD).

IOGen is composed of three parts: a scanner, a parser,

and an I/O pair generator. The scanner recognizes legal Ada

tokens from a stream of characters. It assumes that the

input stream of characters originate from an Ada source

routine which has successfully compiled with no syntax

3

errors. The parser analyzes the tokens and builds a

symbolic execution tree. The I/O pair generator traverses 'p

the symbolic execution tree and generates the I/O pairs.

The scanner removes extraneous blanks and comments and

produces a set of legal Ada tokens. The original IOGen

scanner would not recognize all token types of the language.

Current research work on IOGen will replace the scanner by

ALEX [10] so that the user need not modify the source code.

The parser is the major component of IOGen. The

original IOGen parser is a one pass, top-down, left-to-right

parser. An LL(l) grammar (a subset of Ada syntax) is all %

that this parser could accept. This parser is also being

replaced by AYACC [10] (a parser generator that accepts an

LR(1) gr.mmar) so that IOGen will be able to accept the

entire Ada syntax. The output from the parser is the

symbolic execution tree which represents all of the S

execution paths through the source routine.

The I/O pair generator traverses the symbolic execution

tree and produces one pair for each terminal node in the

tree. For each I/O pair, the input that caused the

particular execution path is matched with the resulting

modifications along the path to form the pair. These I/O I

pairs are the output from the IOGen system. Any information

that is dependent on the implementation of the Ada

environment is rewoved from the I/O pairs resulting in

4

validation/test suites for the source routine. These

validation/test suites could then be executed by the Ada

source routine.

This thesis discusses some extensions to symbolic

execution with respect to the Ada programming language.

Chapter 2 covers a general overview of symbolic execution.

In Chapter 3, the extensions for symbolic execution with

respect to several Ada expressions and constructs are

presented. Each extension involves the manner in which a

program statement or expression is represented by symbolic

execution. Theoretical and practical methods for the

symbolic execution of each extension are discussed and

analyzed. The detailed design of a symbolic execution tree

package for IOGen is the topic of Chapter 4. A case study

in presented in Chapter 5 illustrating the enhanced error

detection capability the design of Chapter 4 affords.

nther areas of research involved with IOGen are briefly

discussed in Chapter 6. Finaily, Chapter 7 provides some

conclusions about the thesis.

....

Chapter 2

Symbolic Execution and IOGen

One of the major goals of the software development

process is verifying that the end product, the computer

program, behaves according to its specifications. Symbolic

execution is one method of program verification and is the

theoretical basis upon which the IOGen system was originally

built.

Hantler and King [7] provide a method of specifying the

correct behavior of a program by use of input/output

assertions and describe one method for showing that the

program is correct with respect to those assertions. in

input assertion is represented as an ASSUME statement and is

inserted at the beginning of a routine. This ASSUME

statement places constraints on all inputs for the routine.

An output assertion is represented as a PROVE statement and

is inserted immediately before the return from a routine.

This PROVE statement represents the expected relation

between the inputs and outputs. A routine is said to be

correct (with respect to its input and output assertions) if

the truth of its input assertion upon routine entry insures

the truth of its output assertion upon the routine's exit.

In a proof of correctness for a program it is necessary

to verify the program correct over all possible inputs.

Hantler and King [7] propose using symbolic values to

'N

6

represent arbitrary program units. By doing this, variables

take on symbolic values of their particular type. The

symbolic values can be represented as an elementary symbolic

variable or expression; an arbitrary string chosen to

represent a variable, or an expression in numbers and

arithmetic operators. In this thesis, each symbolic value

is represented as a Pingle lower case letter.

When a routin- is symbolically executed, the input

parameters are assigned a symbolic value upon routine entry.

As the symbolic execution continues, each occurrence of each

variable is replaced by its symbolic value. In the case of

assignment statements, only the variables in the right hand

side are replaced by their symbolic values. The left hand

side then is assigned the resulting symbolic value of the

right hand side. The symbolic execution of routines that

contain iterative and conditional constructs results in a

symbolic execution tree which contains branches. Each path

through the tree represents an execution path through the

routine. Attached to each path is a predicate, called a

path condition (pc), which describes the conditions that

cause the path to be executed. The pc is initially given a

value determined from the input assertion of the ASSUME

statement at the beginning of the symbolic execution. As

branches are encountered in the symbolic execution tree, the

pc is modified to reflect the particular conditions causing

7

each path by use of an AND operation. The remainder of this

chapter describes input/output (I/O) pair generation using

symbolic execution for several Ada constructs.

2.1 I/O Pairs Generation

The CAISOD serves as the input for symbolic execution

[81. Symbolic execution is used by the IOGen system as a

means of generating I/O pairs rather than as a means of

proving a program correct. A few modifications to Hantler

and King's method are incorporated into IOGen in order to

facilitate the generation of I/O pairs. One modification is

the removal of the ASSUME statement as the input assertion

is always true at the beginning of a routine. Also, since

the CAISOD has been validated and can be assumed to be

correct, the PROVE statement has been removed.

The execution tree generated is used to develop a set

of I/O pairs. The input portion of each I/O pair is

determined from the path conditions at the bottom of each

execution path (or "leaf") in the execution tree. The path

condition describes a set of constraints on the inputs of

the program which cause a particular path to be executed.

Using these constraints, a set of test data can be generated

for each execution path through the program. This test data

may be used to establish initial values for global variables

or input parameters.

The output portion of each I/O pair is generated

8

according to actions taken along its respective path in the

execution tree. The actions taken represent modifications

of global variables and output parameters. The following

sections discuss symbolic execution for several Ada

programming constructs.

2.2 Assignment Statements

Assignment statements are executed by extracting the

values assigned to each of the variables in the right hand

side of the expression, evaluating the right hand side to

reach a particular value, and finally, assigning this value

to the variable in the left hand side of the expression.

Symbolic execution replaces the variables in the right hand

side with symbolic values. Since this resulting expression

contains symbols (not actual values) it is left unchanged.

This resulting expression then becomes the new value for the

left hand side variable.

2.3 IfThenElse Statements

Ifthen else statements are one form of conditional

branching statements. Symbolic execution of if thenelse

statements begins by replacing all variables in the boolean

expression with their symbolic values. Two boolean

expressions are formed using the symbolic boolean

expression. One represents the true boolean condition. The

other represents the false (negated) boolean condition.

The ifthenelse statement causes a two-way branch in

9

the symbolic execution tree. One branch represents the path

taken when the boolean expression evaluates to true. This

becomes the 'then' path. The other branch represents the

path taken when the boolean expression evaluates to false.

This becomes the 'else' path. Eventhough the actual

execution paths may rejoin at some later point in the

program, they will never rejoin in the symbolic execution

tree.

The path conditions for the two paths are formed by

ANDing the current pc with each of the two boolean

expressions. The 'then' path's pc becomes the current pc

ANDed with the symbolic boolean expression. Symbolic

execution continues with the 'then' statements. The 'else'

path's pc becomes the current pc ANDed with the negation of

the symbolic boolean expression. Symbolic execution

continues with the 'else' statements. If the statement does

not contain an else clause, negation of the symbolic boolean

function ISPOSITIVE (num in integer) return boolean is

[11 begin

[2] if (num >= 0) then
[3] return true;
[4] else
[51 return false;
[6] end if;

[71 end ISPOSITIVE;

FIGURE 1. Function ISPOSITIVE

10

expression is not necessary. Symbolic execution for both

paths continues with the instructions following the

ifthenelse statement.

Initialization:

pc <- true
num <- n

2

/\

pc <- (n >= 0) / pc <- !(n >= 0)/

return true 3 5 return false

I/O Pairs

II: (num >= 0) 12: ! (num >= 0)

01: return true 02: return false

FIGURE 2. Symbolic execution tree: Function ISPOSITIVE

Figure 1 presents an example of a function which

returns a boolean value depending on whether the input

integer is positive. The symbolic execution tree for this

function is shown in Figure 2. The symbolic value 'n'

represents the variable num. Figure 2 presents an example

of symbolic execution for the if thenelse statement and

highlights the separation of paths with their corresponding

path conditions.

|-

2.4 Looping Constructs

When a loop is encountered in a routine, it is possible

for the symbolic execution tree to be infinite [121. It is

obvious that routines which contain non-terminating loops

have infinite execution trees. Furthermore, even when the

loops do terminate, the symbolic execution tree may become

unmanageably large. Substituting symbolic values for the

actual variables during symbolic execution introduces

another problem when encountering looping constructs as a

unique symbolic value must be generated for each actual

variable.

Hantler and King [7] solve this problem by using a form

of induction. At the beginning of a loop an inductive

assertion is inserted. Each loop is symbolically executed

once. This symbolic execution acts as if the loop is a

routine all by itself. The path condition upon entrance to

the loop is assumed to be true. After symbolically

executing the loop once, if the path condition is still true

based upon the inductive assertion, then the loop is assumed

to be correct for any number of iterations of the loop. In

this way, the problems of infinite symbolic execution trees

and unmanageably large trees are eliminated.

IOGen takes a similar approach in dealing with looping

constructs. I/O pairs are generated for looping constructs

based upon only one symbolic execution pass through a loop.

S." LI

12

This may not be sufficient for the generation of I/O pairs

for programs that contain looping constructs. Jenkins warns

that additional tests may be necessary for programs

containing looping constructs [8].

The syntactic form of the nontrivial Ada looping

constructs involve a boolean condition. The trivial loop is

one in which there is no boolean expression and behaves as a

simple sequence of statements. The statements of the

trivial loop are symbolically executed as if there was no

loop.

As with symbolic execution of the ifthenelse

statement, a two-way branching occurs in the symbolic

execution tree for nontrivial loops. One branch represents

a single iteration of the loop. The pc at the beginning of

the loop is formed by ANDing the current pc with a true loop

boolean condition. The other branch represents the

execution path around the loop. The pc for this branch is

formed by ANDing the current pc with a negated loop boolean

condition. Once the symbolic execution for the loop has

completed one pass, the pc at that point is ANDed with the

false loop boolean condition and the symbolic execution for

this path continues with the statement following the loop.

Figure 3 presents a function with a looping construct.

This function, TOTALPOSITIVES, counts the positive integers

in an array and returns this value. This function calls the

13

function ISPOSITIVE which is presented in Figure 1. The

symbolic execution tree for this function is shown in Figure

4.

type table type is array <> of integer;
index : integer;

function TOTALPOSITIVES (table : in tabletype;
length : integer) return integer is

total : integer := 0;

pos : boolean;

[11 begin

[2] while index <= length loop
[31 pos := ISPOSITIVE(table(index));
[4] total total + pos;
[5] index index + 1;
[61 end loop;

[71 return ;otal;
[81 end TOTALPOSITIVES;

FIGURE 3. Function TOTALPOSITIVES

The symbolic execution tree in figure 4 is an example

for the while loop. Symbolic execution for the for loop is

identical to the while loop. One branch in the for loop

tree represents one iteration of the loop followed by an

out-of-range index on the loop. The other branch simply

represents an out-of-range index on the loop. The exit-when

construct is handled a little different from the while and

for loops. One branch from the exitwhen represents

termination of the loop and execution continues after the

loop. The other branch is taken when the loop is not being

~'-'a-%- %'%'A "

14

exited and execution continues with the next statement in

the loop. Again, once the loop has been iterated once,

symbolic execution continues with the statements following

the loop.

initialization:

pc <- true
length <- r 2

/\
/\

(index <= r) / ' (index <= r)
/\

IS_.POSITIVE(t(1)) 3 7 return 0

/\
(index <= r) & / \ (index <= r) &
Mt() >= 0) M l (() >= 0)

/\

pos <- 1 3' 3' pos <- 0

return 1 7' 7' return 0

I/O Pairs

II: (index<=length)& 12: (index<=length)&
(table(1)>=O) !(table(1)>=O)

01: return 1 02: return 0

13: !(index<=length)
03: return 0

FIGURE 4. Symbolic execution tree: Function TOTAL POSITIVES

15

2.5 Case Statements

Symbolic execution for the case statement is very

similar to symbolic execution for the if thenelse

statement. The difference is that the if-then-else

statement provides a two-way branch, while the case

statement provides an N-way branch in the symbolic execution

tree. The pc for each branch (except for the others choice)

is formed by ANDing the current pc with the expression

caseselector = 'choice'. The pc for the others choice is

formed by ANDing the current pc with the negation of every

other path choice. Execution for each branch follows the

statements in the respective choices and then continues with

the statements following the case statement. Figure 5 shows

a sample case statement and Figure 6 presents its symbolic

execution tree.

[1] case NUM is
[21 when 0 => temp =0;
[3] when I => temp 1;
[41 when others => temp -1;
15] end case;

FIGURE 5. Case Statement

2.6 Procedure Calls

There are two general approaches to handling the

symbolic execution tree generation for procedure or function

calls. One approach is to act as if the procedure body was

placed in-line with the code of the calling routine. This

16

involves a macro-like expansion into the symbolic execution

tree [51. One potential problem with this approach is that

care must be taken not to confuse variables local to the

procedure with variables i. the calling routine. Also, this

approach requires symbolically executing the procedure or

function each time it is called.

initialization:

NUM <- n

/ \
/ 1

/ \
/ \

Pc' <-pc& / \ pc' <- pc &
(n =0) / !(n 0) &

/pc' <- pc & (n = 1)\ !(n = 1)

2 34

temp <- 0 temp <- 1 temp <- -

I/O Pairs

Ii: NUM = 0 12: NUM = 1 13: (NUM = 0) & !(NUM 1)
01: temp = 0 02: temp 1 03: temp = -1

FIGURE 6. Symbolic execution tree: Case Statement

The other approach designed by [5i recommends that the

symbolic execution tree be built in a bottom-up fashion.

The called procedure or function is symbolically executed

and the I/O pairs for that procedure are generated. At the

point where the procedure is called in the main routine, an

F V, I

p

17

N-way branch is constructed corresponding to the N I/0 pairs

from the procedure. The pc for each branch is constructed

by ANDing the current pc with the pc input part of each I/0

pair from the procedure. This new pc for each branch is

expressed in terms of the symbolic values correspond C

the actual parameters. So, the formal parameters are

substituted by their corresponding symbolic value.

Figure 4 presents the symbolic execution tree for the

function TOTALPOSITIVES. Figure 2 presents the 1/O pairs

necessary for the call to function ISPOSITIVE. The two I/O

pairs generated cause a two-way branch in the symbolic

execution tree of TOTALPOSITIVES at the point of the

function call. Correspondingly, the pc's for each branch

are formed by ANDing the current pc with the pc of each

branch. The 1/O pairs generated from the call to function

ISPOSITIVE are:

I1: (index <= r) & (t(1) >= 0)

I2: (index <= r) & !(t(1) >= 0)

2.7 Summary

This chapter has presented an overview of symbolic

execution as described by Hantler and King [71 and as

designed into the IOGen system by Jenkins [8]. This method

of generating 1/O pairs has been applied to several Ada

constructs to illustrate symbolic execution as implemented

through IOGen.

Tw

Chapter 3

Ada Language Extensions For Symbolic Execution

Symbolic execution, as described by Hantler and King

[71, provides for path coverage testing of a source program.

The IOGen system developed by Jenkins [81 is based upon

Hantler and King's research. Consequently, IOGen is a tool

which assists in the path coverage testing of an Ada source

program.

The primary goal of software testing is to provide as

much assurance as possible that a program behaves in

accordance with its specification. While path coverage

testing provides some assurance that a program is correct,

it is still possible for errors to remain undetected. A

much stronger level of testing is multiple condition

coverage testing [4]. Multiple condition coverage testing

not only encompasses path coverage testing, it also provides

coverage for all the possible input combinations that can

cause the various paths to be executed. A program that

passes a multiple condition coverage test has a higher level

of assurance of its correctness than if it only passes a

path coverage test.

The next logical step to take with IOGen is to enhance

it so that it provides a set of test cases that constitute a

multiple condition coverage test. This is the primary

motivation for this thesis. The purpose of this chapter is

I

I v'q

19

two-fold. First, it provides a basis upon which IOGen can

be enhanced into a multiple condition coverage testing tool

for the Ada language. Second, it extends the theory of

symbolic execution for the Ada language in general. These

extensions will make symbolic execution a more powerful

method of assuring the correctness of Ada programs.

3.1 Overview

This chapter is divided into ten sections based upon

expressions, statement types, and Ada constructs that

require extra consideration. The categories are: boolean

expressions, arithmetic expressions, arrays, attributes,

access types, undefined variables, input, discriminants,

subtypes, and variant records. One assumption of the IOGen

system is that the Ada source program must compile with no

errors. This same assumption holds throughout this thesis.

The symbolic execution extensions described in this chapter

apply only to the run time environment of the program and

not to any syntax or type checking errors that may exist.

3.2 Boolean Expressions

Boolean expressions occur in several statement types in

order to provide a program the ability to make decisions and

act accordingly. Boolean expressions are composed of

boolean variables and simple relational expressions by

connecting them with logical operators. Boolean variables

can take on only the values true and false. Simple

V.

20

relational expressions compare two expressions to each other

or a variable to a value. An example of a simple relational

expression is (num >= 5). Simple relational expressions

also evaluate to either true or false. In this example, if

num is 5 or greater then the expression is true. Otherwise,

the expression is false. By connecting boolean variables

and relational expressions, rather complex boolean

expressions can be constructed.

The logical operators in the Ada language are: AND, OR,

XOR, AND THEN, and OR ELSE. The AND operator evaluates to

true only when the boolean values on both sides of it are

true. The OR operator evaluates to false only when both

boolean values are false. The XOR operator evaluates to

true only when exactly one of the boolean values is true.

The AND THEN operator performs the AND operation only if the

left boolean value is true. Otherwise, it evaluates to

false. Similarly, the OR ELSE operator performs the OR

operation only when the left boolean value is false.

Otherwise, it evaluates to true.

For a boolean expression that contains only one

boolean variable or simple relational expression, there are

only two possible input combinations for the expression.

These, of course, are true and false. However, if the

boolean expression contains more than one boolean variable

or simple relational expression, then there are more than

p

21

two possible input combinations to the expression. Since

each boolean variable and simple relational expression has

two possible values, the number of input conditions on a

boolean expression is a power of two. This power is just

the number of individual boolean variables and simple

relational expressions in the boolean expression. Figure 7 a-

shows an expamle of a boolean expression with three boolean

variables A, B, and C. The table shows that there are eight

possible input combinations. This agrees with the formula

of two raised to the third power.

Boolean Expression ((A OR B) AND C)

A B C ((A OR B) AND C) I

T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T F
F F F F

Figure 7. Boolean Expression Input Combinations

Path coverage testing of the boolean expression in

Figure 7 requires that only two sets of inputs need to be

considered. One set would represent a true value of the

boolean expression and the other set would represent a false

22

value. Normal symbolic execution of this example, would

result in six sets of possible input conditions that would

remain untested. This means that it is possible for

undetected errors to remain for six out of eight sets of

input conditions. For more complicated boolean expressions,

the potential for undetected errors increases.

Multiple condition coverage testing requires that all

eight sets of input conditions from Figure 7 be considered.

As a result, the symbolic execution of the boolean

expression must accommodate all the possible input

combinations. Thus, in the symbolic execution tree for the

example, there is an eight-way branching from the node

rppresenting the statement containing the boolean

expression. In general, the branching factor in the tree

for boolean expressions must be the same value as the number

of sets of input combinations. By making this extension,

symbolic execution can provide multiple condition coverage

for boolean expressions.

One aspect of boolean expressions in the Ada language

that is not found in other languages is the ability to test

the equality of entire data structures. For example, a

simple relational expression could be two arrays of the same

type being tested for equality. If every item in one array

is identical to the item in the corresponding position of

the other array, then the simple relational expression

23

evaluates to true. Otherwise, the expression evaluates to

false. Theoretically, the symbolic execution tree for this

particular situation should contain branches for every

possible combination of one or more array position values

being unequal in addition to a branch for all being equal.

This same type of statement holds true for whatever data

structure is being tested for equality. This combinatorial

explosion of branching is also compounded by the extended

branching already discussed. For example, suppose a boolean

expression contained a mixture of equality tests of data

structures and other relational expressions. The branching

from this boolean expression would be a product of all the

possible branches from each relational expression. Clearly,

this theoretical method of branching is very impractical.

A more practical solution to this situation is to

simply allow the equality or inequality of the expression to

evaluate to the values of true or false. If it is important

to the source program that a certain pair of values in the

data structures be equal or unequal, this could be detected

using other analysis techniques, such as data flow analysis.

This solution, in effect, adds no other branching into the

symbolic execution of boolean expressions other than what

has already been discussed.

Appendix A contains a sample Ada program which has at

least one error. This error occurs in a boolean expression

25

coverage symbolic execution can provide additional branching

at arithmetic expressions for overflow and underflow.

Should the arithmetic expression contain a division

operation, another branch is required in the symbolic

execution tree to reflect the possibility of division by

zero. All of these branches are in addition to the standard

branch for normal execution without an error.

Mathematical functions that are discontinuous or are

undefined over a range of possible inputs are also potential

avenues for numeric errors. An automated symbolic execution

tool would be unable to to distinguish a user defined

mathematical function from any other user defined function.

In either case, the symbolic execution for the function call

would have to follow the normal method of branching

according to the I/O pairs generated from the symbolic

execution of the function.

Symbolic execution could be specifically tailored to

accomodate predefined mathematical functions for a

particular programming language. The logarithmic function

is undefined for negative numbers. Inverse trigonometric

functions are discontinuous at periodic intervals. These

are examples of predefined functions for which symbolic

execution could be sensitive to a particular language. The

developer for a specific symbolic execution tool would need

to compile a list of the predefined functions for the target

%I

26

source language. Branching for the undefined and

discontinuous error possibilities could then be built into

the symbolic execution tree for these particular function

calls.

3.4 Arrays

An array is a data structure that allows a related

group of data to be referenced by a common name. Individual

data items are stored into and retrieved from an array via

an index. Richardson and Clark [3] identify array indexing

as one weakness in symbolic execution. If the array is

indexed by a variable, then there is no guarantee at run

time that the variable is within the bounds of the array.

Hence, it becomes necessary to provide an additional branch

in the symbolic execution tree each time an array is

encountered for the possibility of an index out of range.

In the case of an n-dimensional array, the number of

possible input conditions on the array indices is two to the

nth power. The input conditions represent whether the array

indices are within or outside the constraints for their

respective index positions. From a theoretical standpoint,

symbolic execution should provide a branch in the tree for

each of these possible input conditions. From a practical

standpoint, the symbolic execution tree would become very

large for even very small and simple programs. An actual

implementation of this may benefit from creating only a two-

27

way branch at each array. One branch represents that all

of the indices are within their bounds. The other branch

represents the possibility that any combination of one or

more indices is out of the bounds on its range. For most

programs, having any one array index out of bounds would be

a logic error that would require correction. Having only

one branch to represent all of the error conditions on the

indices does not provice for multiple condition coverage.

But, it may end up being a practical method of implementing

array handling in symbolic execution.

3.5 Attributes

The Ada language provides a set of constructs called

attributes which can be used to determine certain properties

of types, objects and subtypes during execution [2]. These

attributes are formed by appending an apostrophe and the

attribute name onto the end of a variable name. The

attributes that are of interest in terms of symbolic

execution are SUCC, PRED, and VALUE.

These attributes are actually special functions in the

Ada language. SUCC returns the value of the next item of

its variable's type. For example, if the variable is an

integer with the value 6, then the SUCC attribute would

return a 7. PRED is similar to SUCC except that it returns

the previous item of the variable's type. The VALUE

attribute operates on a string of characters that match one

-~~I a , W 'r 4' '%r'S* r~'v'e

28

of the items of the variable's type. When this string is

operated on by VALUE, it returns the item of the type the

string matches.

The possibilities for errors with the SUCC and PRED

attributes occur when the variable contains a value at one

of the extremes of its type. The SUCC attribute causes a

constraint error when the variable contains the last value

of its type. Similarly, the PRED attribute causes a

constraint error when the variable contains the first value

of its type. These errors are possible when the variables

are sybtypes or enumeration types. Once again, the symbolic

execution tree will contain an extra branch for the

possibility of these error conditions any time the SUCC or

PRED attribute occurs.

The VALUE attribute has a high potential for error. If

the string does not exactly match one of the items of the

variable's type, a constraint error occurs. As with the

other attributes discussed, the symbolic execution tree

needs to have an extra branch for this possible error

condition every time the VALUE attribute occurs.

3.6 Access Types

Access types are more generally referred to as

pointers. Access types are defined to either reference a

particular type of data structure or to contain a value of

null [2]. Assigning a null value to an access type may be a

29

desirable thing to do in many circumstances (i.e. signifying

the end of a linked list or a 'leaf' node in a tree,

etc...).

The potential for error in using access types occurs

when attempting to store or retrieve data when the access

type is null. This may occur in three different ways. When

an access type is created, it is assigned a default value of

null. An access type may be assigned a value of null within

the code of the program. Or, an access type may be

deallocated.

If two access types reference the same data structure

and one of them is deallocated, both access types are set to

null. This is known as a dangling reference [2] and it

represents one of the major problems with access types. An

attempt to store or retrieve data from an accss type that

is a dangling reference causes a constraint error. So,

symbolic execution must be sensitive to this possibility for

a null access type (as well as the other two possible ways

access types become null) and provide an extra branch in the

tree for each occurance of an access type.

3.7 Undefined Variables

At any point within a program, a variable may be

ieferenced which has not yet been assigned a value.

Depending on the type of the variable, a number of possible

errors may occur. In the case that the variable is a

.'I

30

subtype, a constraint error may occur. While theoretically

symbolic execution should account for the possibilities of

these errors occuring, it would not be very practical.

Creating extra nodes and branches in the symbolic execution

tree every time a variable is referenced requires excessive

overhead. Keeping a table of every variable which has been

defined and then creating a branch for each one referenced

that is not in the table has some flaws. For arrays, there

is a problem of keeping track of which positions have been

defined. For records, the data items of each record have

the same names. For these reasons, it is impractical to

implement a strategy for undefined variables into symbolic

execution and requires another technique such as data flow

analysis.

3.8 Input

Data inputs into a program are another source of

potential errors. The Ada construct for reading data is the

GET or GETLINE command [2]. In most situations, the data

input into the program is what the program expects.

However, at times thp input may be of a different type than

expected. Or, if subtypes are being used, the data may be

of the correct type but it may be outside the bounds of the

subtype.

Symbolic execution for the GET or GETLINE command

containing n variables requires a branching factor of three

%I... V .

31

raised to the nth power. This is due to the three possible

input conditions mentioned for each variable. A practical

method would be to generate a three-way branch in the

symbolic execution tree for GET or GETLINE commands. One

branch represents that the inputs are all of the correct

type and within their respective constraints. The next

branch represents that at least one variable is outside its

range of constraints. The third branch represents that at

least one variable received data of the wrong type. This

method eliminates the branching explosion described above

yet it still addresses the error possibilities presented

here.

3.9 Discriminants

A discriminant in the Ada language appears as a

parameter in a record declaration [2]. It is used to

declare records of slightly differing types. The difference

between the records is the value of the discriminant.

The problem posed here for symbolic execution is the

fact that it is possible for assignments to be made from one

record to another of the same type which have different

values for their discriminants. If this happens during

execution, a constraint error occurs. Therefore, the

symbolic execution tree must provide an additional branch

for record assignments when the records are defined using

discriminants. This extra branch represents the constraint

%I

32

error that is riised if the discriminants are of different

values.

3.10 Subtypes

Subtypes have been mentioned in several of the

subsections of this chapter. This subsection is provided to

cover subtypes in general.

Subtypes in the Ada language allow for variables that

are defined for only a portion or range of another typeF%
[2]. The Ada compiler allows assignments from a variable of

the parent type to a variable of the subtype. In some cases

the variable of the parent type may contain a value outside

the range of th subtype. When this occa-'3, a constraint

error is raised. Symbolic execution can provide an extra

branch for the possibility of a constraint error each time

a value is assigned to a subtype variable.

3.11 Variant Records

Variant records are record types which contain

different variables depending upon the value of a case

variable in the record. This situation is similar to the

one described for discriminants, however, the error that may

occur here will do so for a different set of circumstances.

A constraint error will result from attempting to use a

variable of the record that does not exist due to the value

of the case variable. Therefore, the symbolic execution

tree must generate an extra branch for each reference to a

% %

33

selected component of a record that may vary based on the

case variable.

3.12 Remarks

For each new branch, a path condition can be generated

which is based on the prior pc and the condition causing the

branch. This generated path condition characterizes the set

of all initial states for the procedure that will cause the

error condition. A valuable extension to this approach

would involve determining whether that set of initial states

is empty. When it is, then the erroneous path is

unreachable, and no test case needs to be generated.

For a symbolic execution system to be able to recognize

access types, subtypes, records using discriminants, and

variant records, it will need to keep type and range of

value information for all of the data structures and

variables in the source program. This will require even

more memory utilization and execution time on top of the

greatly increased size and manipulation time of the symbolic

execution tree. However, in order to increase the error

detection capability of symbolic execution, this extra price

must be paid.

3.13 Summary

This chapter presented several Ada expressions,

statement types, and constructs for which symbolic execution

does not address. An analysis of each of these items was

WAI

34

conducted to provide a theoretical extension for them under

symbolic execution. The theoretical extensions for some of

the items were found to be impractical. In these cases,

more practical yet less comprehensive extensions to symbolic

execution were discussed.

U

Chapter 4

Symbolic Execution Tree Package

The detailed design of the symbolic execution tree

package is presented in this chapter. This package along

with ALEX and AYACC [10] will be the three major components

of the IOGen system. The symbolic execution tree package

requires some minor additions within AYACC and the compiler

procedure that drives ALEX and AYACC.

4.1 Overview

The basis upon which the symbolic execution tree

package is designed is the CAIS list management environment

[I1. The CAIS list management environment contains six

packages of procedures and functions for list management.

These packages are: CAIS_List_Management, CAISListItem,

CAISIdentifierItem, CAISIntegerItem, CAISFloatItem,

and CAISString Item. Four of these packages are used in

this design. The four are the first, second, fourth, and

sixth packages listed. The symbolic execution tree

structure is easily represented, built, and manipulated in a

list form. The advantage to designing the tree based upon

lists is the fact that the power and versatility of the

CAIS list management environment is utilized.

The symbolic execution tree package designed in this

chapter includes the Ada programming constructs described in

Chapter 2 and the extensions for boolean expressions

36

developed in Chapter 3.

characters tokens

source charace-- ALEX tokens >1 compiler
program

I/O pairs symbolic tokens
output I<------------ execution < -------- tokens
file tree

package V

AYACC
I----------------

reductions

Figure 8. IOGen System Configuration

Figure 8 represents the structure of the major

components of this design for IOGen. The compiler is the

main driver for the system. It calls the lexical analyzer,

ALEX, for tokens which are built of character strings from

the source program. Based upon these tokens, the compiler

uses the tables in the parser, AYACC, to parse the program.

AYACC is an LR(1) parser which parses the program in a

bottom-up fashion. The symbolic execution tree package

receives the tokens from the compiler as well as procedure

calls from the parser as productions are reduced. Once the

entire program has been parsed, and the symbolic execution

tree is complete, the I/O pairs are contained in the 'leaf'

nodes of the tree. The tree is traversed to find the leaf

nodes and send the I/O pairs to an output file.

37

4.2 Design of the Package

The symbolic execution tree package is designed to

utilize the CAIS list management environment [11 as well as

token-stack This is a stack of tokens from the source
program. These tokens were built by the
lexical analyzer and sent to this package by
the compiler.

symb extree The outermost list of the tree structure.

leaflist A list of the leaf nodes in the tree structure
at a given point in the symbolic execution.

current-list : The current active list. In most cases this
will be the parent node for which new
children are being created and inserted
into.

new nodes table : A table of nodes (lists) being created for
insertion into the tree list structure.
In many cases, several nodes are being
created at the same time (i.e. for boolean
expressions).

relationstable A table of the simple relations that make
up a boolean expression. These simple
relations are used to generate the
multiple input conditions on the boolean
expression.

boolean expression A string variable that will contain a
boolean expression from the source
program. This will be used in the
boolean evaluation of the multiple
input conditions generated from the
relations table.

statement-string: A temporary working area for various
statement fragments throughout the
package.

Figure 9. Data Structures

38

to interart with the rcompiler and parser. Figure 9 shows

the major data structures of the symbolic execution tree

package. All of the data structures except the tokenstack

and the symbextree are local to each procedure. The

tokenstack is a global structure that may be used by any of

the procedures. The symb-ex-tree represents the entire tree

structure and points to the root node.

The general structure of a node in list form is:

A(#_of sublists,B(),...,N(),pc,oc).

"B()....,N(are the sublists or children nodes, pc, is

the current path condition, and 'oc' is the current set of

output conditions.

Figure 10 contains a list of the major procedures in

the package. They are only presented here as a consolidated

list of the procedures. The detailed algorithms are

presented in the following subsections.

Procedure AssignmentStatement
Procedure GenerateNewNodes
Procedure For_Loop
Procedure WhenClause
Procedure ProcedureCalls

Figure 10. Package Procedures

The symbolic execution of several Ada constructs was

presented in Chapter 2. The constructs were: assignment

statements, if-then-else statements, looping constructs,

'€ k ' ' .. . , .: . . - . ,. .- . . , , ,.- -. .'. S

39

case c*tements, and procedure calls. The symbolic

execution of these constructs is discussed again in this

section with respect to this design. This discussion will

center on the processing of each of these Ada statement

types from the point they are recognized in the parser until

the appropriate nodes have been built and inserted into the

tree.

4.2.1 Assignment Statements

The production in the Ada grammar [6] for an assignment

statement is:

assignmentstatement ::= variablename := expression

When the parser reduces this production, an assignment

statement has been recognized. The action associated with

this reduction is a call to procedure

Assignment_Statement. The algorithm for this procedure is

presented in Figure 11.

Figure 12 shows an assignment statement with the before

and after versions of the tree list structure. The

assignment statement is x := 0 ; List A contains only the

path condition (pc) and output conditions (oc) associated

with it prior to generating its sublist (child). List B is

the new node created for the assignment statement. List B

is assigned the pc from its parent list as the pc does not

change in this assignment statement. The oc is ANDed with

the result of the assignment statement and becomes the

40

Procedure AssignmentStatement

- extract the assignment statement tokens off the
tokenstack and rebuild the statement in the
statementstring.

- create a new node using procedure SetToEmpty__Listfrom the CAIS_ListManagement package.

- extract the oc from the currentlist using procedure
Extract_Value from the CAISStringItem package.

- AND the assignment statement in the statement-string
with the oc.

- insert the new oc into the new node using procedure
Insert from the CAISStringItem package.

- extract the pc from the currentlist using procedure
ExtractValue from the CAISStringItem package.

- insert the pc into the new node using procedure
Insert from the CAISStringItem package.

- replace the pc and oc from the currentlist with an
empty string using procedure Replace from the
CAIS_StringItem package.

- insert this new node into the currentlist using
procedure Insert from the CAIS_ListItem package.

- insert the value 1 into the currentlist as the
number of sublists (children) is 1. Use procedure
Insert from the CAIS_Number Item package.

- set the currentlist to the new node using procedure
MakeThisItemCurrent from the CAIS_ListManagement
package.

Figure 11. Procedure Assignment-Statement

output conditions for list B. List B is inserted into list

A and the number of sublists, 1, is inserted into list A as

it has only one sublist. From this point the parsing of the

41

sourre program and symbolic Axecuticn may continue with the

next statement in the source program.

x := 0

A(pc,oc) -- before symbolic execution

A(1,B(pc,oc&x=0)) -- after symbolic execution

Figure 12. Symbolic Execution of an Assignment Statement

4.2.2 IfThenElse Statements

The production in the Ada grammar for an if_thenelse

statement is:

if-statement ::= IF condition Then sequence of statements

(ELSEIF conditionTHEN sequence of statements)

/ELSE-sequenceofstatements\ END IF ; [6].

The nonterminal condition is a boolean expression and it is

the primary focus of this section and the section on looping

constructs. The nonterminal sequenceofstatements is one

or more Ada statements. The nonterminal (ELSEIF_...) is an

optional construct that allows for an else if part of the

statement. This is another means of nesting if statements.

The nonterminal /ELSE_...\ is also an optional construct

that allows for a final else part of the if statement.

Previously, symbolic execution of boolean expressions

has only provided a two-way branching in the symbolic

execution tree. From the discussion on boolean expressions

in Chapter 3, it is apparent that the branching factor must

42

accomod~te the multiple input conditions that can occur in

the boolean expression. In particular, this branching

factor was determined to be 2 raised to the nth power for a

boolean expression containing n simple relational operators.

In some cases, a boolean expression may have several simple

relations and the branching factor may get rather large.

However, in most cases, the number of simple relational

operators will not be more than two or three. So, the

branching factor will usually not exceed eight for a given

boolean expression. In light of this, modifying symbolic

execution to branch according to the multiple input

conditions is practical and will provide a higher level of

confidence in the correctness of a program.

Prior to recognizing the ifthenelse statement, the

parser will recognize its boolean expression. While the

parser is in the process of reducing tokens and nonterminals

to a boolean expression, it will recognize each of its

simple relational expressions. At the point that each

simple relational expression is reduced, the tokens for that

expression are on the top of the tokenstack. When the

reduction occurs, the action is to place a copy of the

tokens for the expression into the relationstable. When

the reduction occurs for the entire boolean expression, all

of the simple relational expressions are in the

relations-table. At this point, all of the tokens that make

NMI L

a'

.

43

Procedure GenerateNewNodes 1,

- remove the tokens for the boolean expression from the
token stack and place them into the booleanexpression
string.

- extract the pc and oc from the currentlist using
procedure ExtractValue from the CAIS_StringItem
package.

- generate the multiple input conditions based upon the
relations in the relations table.

- for each set of input conditions loop

-- create a new node using procedure SetToEmpty_List
from the CAIS_ListManagement package.

-- AND th3 pc from the parent list with the input
conditions for the current loop.

-- insert the oc into the new node using procedure
Insert from the CAIS_StringItem package.

-- insert the new pc into the new node using procedure
Insert from the CAIS_StringItem package.

-- evaluate the input conditions against the
boolean expression. If the value is true, place a
true marker into the new node. Otherwise place a
false marker in the new node. Use procedure Insert
from the CAIS_StringItem package.

-- insert the new node into the current list using
procedure Insert from the CAIS_ListItem package.

- insert the number of new nodes into the currentlist
using procedure Insert from the CAIS_NumberItem
package.

Figure 13. Procedure GenerateNewNodes

up the boolean expression are on the top of the token stack.

The action for the reduction of the boolean expression is a

call to procedure GenerateNewNodes. Figure 13 shows the

44 '

algorithm for this procedure.

As the parsing continues, the 'then' portion of the

ifthenelse statement is encountered. The next reduction

to take place in the parser that is of interest is for the
p

first statement in the then portion. The sequence of

statements that make up the then portion are symbolically

executed prior to the parser reducing then to the p

sequenceof statement nonterminal. In other words, since

the parse proceeds left-to-right while the reductions occur

in a bottom-up manner, nested statements must be

symbolically executed prior to the symbolic execution of the

nesting statement. This implies a rather recursive manner

to the symbolic execution when one or more statements is

nested within another statement. In the case of the

if-then-else statement, the boolean expression is reduced

and can be processed before the nested statements of the

then and else parts are encountered. So, the new nodes

created in procedure GenerateNewNodes will exist when the

point is reached to begin symbolically executing the nested A

statement-s.

The symbolic execution of these nested statements will

result in nodes with incomplete pc's and oc's. This is due

to the fact that these statements are symbolically executed

without knowledge of which node would become its parent.

Upon the reduction to the nonterminal sequence of statements

A
A-

.-

45

for the 'then' part, the sequence will be in a partially

completed list structure. However, this list structure will

not have a parent at that moment. For the case that thi.

list represents the then portion of an ifthenelse

statement, a copy of this list can be placed into each node

that has a true marker from procedure GenerateNewNodes.

Copies of the list can be created by calling the procedure

Copy-List from the CAIS_List_Management package. This *

procedure will have to be called for each copy that is

needed. The only remaining step to perform is to AND the pc

and oc of the node receiving the list with every partial pc

and oc in the list structure.

This same recursive process must occur for the else'

portion of the ifthenelse statement (if one exists). A

copy of the new list structure must be inserted into each of

the nodes containing a false marker. Then the pc and oc for

every node in the list structure must be updated as

described above. The true and false markers can be removed

once the list is inserted into the node.

In the event that the ifthenelse statement has an

elseif ° part, this represents a nesting of another if

statement in the else part of the outer statement. Again,

the same process applies to this nested ifthenelse

statement as before. The only difference is that each node

that evaluated to false at the outer level obtains as
SI

S

- - ~*N)~ *N-

p
46

children a complete set of nodes generated from the symbolic

execution of the nested boolean expression within the

'elseif' part. This process repeats itself recursively each

time another 'elseif' construct is encountered.

Once the final 'else' part is symbolically executed and

all the lists are inserted into their parent lists (with

pc's and oc's updated), the parser recognizes the outer

ifthenelse statement and performs the reduction. From

this point, the parsing may continue on to the next

statement in the source program. Symbolic execution will

proceed for each leaf node in the list structure.

Figure 14 shows an example of an if then else statement

with a somewhat complex boolean expression. Prior to

symbolically executing the statement, the parent is simply

the list A. The boolean expression contains three simple

relational expressions U, V, and W. Accordingly, these are

placed in the relations table. From these three

expressions, there are eight sets of input combinations for

the boolean expression. All of these input combinations are

evaluated and new nodes are created for each set. The list

structure is shown for the completed symbolic execution for
4'.

the entire if then else statement. Lists B thru I are

sublists of list A but are shown outside of list A for

clarity.

'U

'U

'U

47

If ((U AND V) OR W) Then -- if thenelse statement
x 0;

Else
X 1;

End If;

A(pc,oc) -- list of parent before symbolic execution

-- after
B(1,J(pc&U&V&W,oc&x=O)
C(1,K(pc&U&V&!W,oc&x=O)
D(1,L(pc&U&!V&W,oc&x=O)
E(1,M(pc&U&!V&!W,oc&x=l)
F(1,N(pc&!U&V&W,oc&x=O)
G(1,O(pc&!U&V&!W,oc&x=l)
H(1,P(pc&!U&!V&W,oc&x=O)
I(1,Q(pc&!U&!V&!W,oc&x=l)

Figure 14. Symbolic Execution of an IfThenElse Statement

4.2.3 Looping Constructs

The Ada looping constructs introduced in Chapter 2

were: for, while, and exit-when constructs. The while and

exitwhen constructs both involve boolean expressions upon

which the decision to remain in the loop or leave the loop

lies. The for loop does not involve a boolean expression

but rather the number of times the loop iterates is

determined prior to entering the loop.

The production in the Ada grammar for the for loop

specification is:

iteration scheme ::= FOR loop__parameter-specification [6].

When this production is recognized and reduced, the action

48

taken is to call procedure ForLoop. Figure 15 shows the

algorithm for this procedure.

Procedure For_Loop

- extract the loop parameter specification tokens from the
tokenstack and place them in the statementstring.

- create two new nodes using procedure Set_To EmptyList
from the CAISListManagement package.

- extract the pc and oc from the currentlist using
procedure ExtractValue from the CAISStringItem
package.

- insert the oc into both of the new nodes using procedure
Insert from the CAISString Item package.

- AND the pc with 'loop variable = first loop value'

- insert this new pc into one of the new nodes using
procedure Insert from the CAISString Item package.

- AND the old pc with 'loop variable not in range'

- insert this new pc into the other new node using
procedure Insert from the CAISStringItem package.

- insert both new nodes into the currentlist using
procedure Insert from the CAISList_Item package.

- insert a 2 into the currentlist using procedure Insert
from the CAISNumberItem package.

Figure 15. Procedure ForLoop

Procedure ForLoop creates a two-way branch in the

symbolic execution for a for loop as described in Chapter 2.

Symbolic execution continues for the node whose branch

enters the loop. The body of the loop is a sequence of

statements just as the 'then' part of the ifthen else

_J'r WVU %WUrr e

49

statement contained a sequence of statements. This sequence

is symbolically executed and the resulting list becomes a

sublist of the node entering the loop. Upon encountering

the end of the loop, the grammar production for a

loop-statement is reduced. When this occurs, the symbolic

execution for both branches with the next statement

following the loop.

Figure 16 shows a for loop with its corresponding

before and after tree list structures.

For i := 1 to n loop
x := x+l;

End Loop;

A(pc,oc) -- before

A(2,B(_),C()) -- after
B(1,D(pc&i=l,oc&x=x+l),pc&i=l,oc)
C(pc&i<>l..n,oc)

Figure 16. Symbolic Execution of a For Loop

Note that the branch node entering the loop, B, also

contains the node for the assignment statement within the

loop. This represents that the entire loop has been

symbolically executed and the process may continue with the

next statement in the source program.

The production that indicates a while loop in the Ada

grammar is:

I4

50

iterationscheme ::= WHILE condition [6].

Just as in the ifthenelse statement, the nonterminal

condition is a boolean expression. When the boolean

expression is recognized in the parser, the procedure

GenerateNewNodes is called as described earlier.

Similar to the then part of the ifthenelse statement,

the sequence of statements in the while loop must be

symbolically executed prior to the parser recognizing the

while loop body. The same nested process as described

before must be undertaken. The list structure representing

one iteration through the loop body must be copied and

inserted into each node that evaluated to true. Again, all

pc's and oc's in the list must be updated as described

earlier. Once this is complete, the parser reduces the loop

construct and symbolic execution may continue for every leaf

node in the tree list structure.

While (U AND V) Loop
X := x+y;

End Loop

A(pc,oc) -- before

A(4,B(_),C(_),D(_),E(_)) -- after
B(1,F(pc&U&V,oc&x=x+y),pc&U&V,oc)
C(pc&U&!V, oc)
D(pc&!U&V,oc)
E(pc&!U&!V,oc)

Figure 17. Symbolic Execution of a While Loop

51

Again, note that the branch node, B, that goes into the loop

also contains a node, F, for the assignment statement in the

loop. Furthermore, the boolean expression contains two

simple relational expressions which require the four-way

branching of the loop.

The exit-when construct is similar to the while loop

except that the exit condition (boolean expression) does not

necessarily occur at the beginning of the loop. Following

the process for the exitwhen construct presented in Chapter

2, the symbolic execution of the loop up to the exitwhen

statement will proceed as if a loop has "iot been entered.

This is due to the fact that loops are only symbolically

executed once and there has been no branching due to the

loop structure to this point. Once the exitwhen statement

is encountered, it is handled exactly as the while loop

except that the nodes whose boolean expressions evaluated to

false enter the loop. Those nodes whose boolean expressions

evaluated to true skip the rest of the loop. As with all

other constructs, symbolic execution continues for all

leaf nodes following the end of the loop.

4.2.4 Case Statement

The production in the Ada grammar for the case

statement is:

casestatement : CASE expression IS

casestatementalternative(case_statementalternative)

.........

52

END CASE ; [6].

The nonterminal expression represents some type of variable

such as a simple variable, array position, record variable

etc... The nonterminal case_...(...) represents a sequence

of when clauses for the case statement.

The first reduction of interest in the parser is the

reduction to the nonterminal expression. When this

reduction occurs, the variable is taken off the token-stack

and placed in the statement string. This is used to update

the pc's later in the process.

The next reductions to occur are all involved in the

statements that comprise the body of the first when clause.

Again, as in the ifthen else statement, a recursive level

of symbolic execution must occur to process the sequence of

statements of the when clause. This repeats for each when

clause encountered in the case statement. Once the sequence

of statements is processed and the list structure is built,

the reduction for the individual when clause occurs. At

this point the action from the parser is to call procedure

WhenClause.

Figure 18 shows the algorithm for procedure

WhenClause. This procedure completes the symbolic

9execution tree for one of the options in the case statement.

It will be called once for each when clause reduced. Upon

completion of the case statement, symbolic execution

|I

53

Procedure WhenClause

- extract the pc and oc from the current-list using
procedure ExtractValue from the CAISStringItem
package.

- create a new node for this when clause using procedure
SetToEmptyList from the CAISListManagement package.

- insert the oc into the new node using procedure Insert
from the CAISStringItem package.

- extract the case option value from the tokenstackl

- append the variable in the statementstring with an
equal sign and the case option value. If the value is
Iothers' this will become a sequence of variable <> all
other option values.

- AND this input condition with the pc from the parent
node.

- insert this new pc into the new node using procedure
Insert from the CAIS_StringItem package.

- insert the list structure for the sequence of statements
into the new node using procedure Insert from the
CAISList Item package.

- update the pc's and oc's in the inserted list as
described earlier.

Figure 18. Procedure WhenClause

continues with the next statement for each leaf node in the

tree list structure.

Figure 19 shows a case statement with the list

structure from both before and after symbolic execution.

Again, note that the list structures for nodes B thru D are

shown outside list A for clarity.

- .- r 'or -V. I - -

54

Case x Is

When 0 => flag := false;
When 1 => flag true;
When others => flag := true;

End Case;

A(pc,oc) -- before

A(3,B(_),C(_),D(_)) -- after
B(pc&x=O,oc&flag=false)
C(pc&x=l,oc&flag=true)
D(pc&x<>O&x<>l,oc&flag=true)

Figure 19. Symbolic Execution of a Case Statement

4.2.5 Procetire Calls

The Ada grammar production for a procedure call

statement is:

entry call_statement ::= entry-name/actual-parameter-part\

The nonterminal entryname/... \ contains the procedure name

and a parameter if one exists. When the reduction for the

entry-callstatement nonterminal occurs, the procedure

ProcedureCall is called. This procedure is shown in Figure

20.

The process of creating an n-way branch in the symbolic

execution tree for the n I/O pairs from a procedure call was

discussed in Chapter 2. This results in a considerable

amount of time saved by not having to execute the procedure

each time a call to it is encountered. Rather, it is

AI

55

Procedure ProcedureCall

- extract the pc and oc from the currentlist using
procedure ExtractValue from the CAISStringItem
package.

- for each I/O pair from the symbolic execution of the
named procedure loop :

-- create a new node using procedure SetTo Empty-List
from the CAISListManagement package.

-- AND the oc from the parent node with the oc from
the I/O pair.

-- insert this new oc into the new node using
procedure Insert from the CAISStringItem package.

-- AND the pc from the parent node with the pc from
the I/O pair.

-- insert this new pc into the new node using
procedure Insert from the CAIS_StringItem package.

-- insert the new node into the current_ list (parent)
using procedure Insert from the CAISListItem
package.

- insert the number of new nodes into the parent node
using procedure Insert from the CAISNumberItem
package.

Figure 20. Procedure ProcedureCall

symbolically executed once, and the I/O pairs are saved to

an output file. When the procedure is called in the source

program, the list of I/O pairs is all that is needed to

expand the tree for the procedure call. Upon completing

symbolic execution of the procedure call, the execution may

continue with the next statement in the source program as

56

before.

4.2.6 Design Wrap-Up

At the end of each subsection a statement is made

about how the symbolic execution continues after the

statement was completes. In particular, the symbolic

execution continues to the next statement for each leaf node

in the tree list structure. The leaflist from the data

structures in Figure 9 contains a list of the leaves in the

tree list structure.

Upon completing the symbolic execution for a given

statememt type, the leaves in the list structure are placed

in the leaf list. As the symbolic execution for the next

statement completes, a copy of the subtree list is made for

each node in the leaflist. This can be accomplished using

procedure Copy-List from the CAISListManagement package.

Each copy must be traversed to update the pc and oc as

described earlier for nested statements. As each copy is

being traversed, its leaves are saved in a new leaflist for

the next statement symbolically executed. Once all the

copies have been traversed, the execution proceeds to the

next source program statement.

Finally, at the end of the source program, the pc's and

oc's of the leaf nodes make up the I/O pairs for the

program. These pairs are saved in an output file for

further use or to be printed out as results.

57

4.3 Summary

This chapter has presented the detailed design of the

symbolic execution tree package for the IOGen system. The

major data structures and procedures for this package have

been described in detail as well as being presented in the

figures. Symbolic execution for all of the Ada constructs

discussed in Chapter 2 was covered along with the extension

for handling boolean expressions.

p.

-'

€a

i * % A. I %' !

-1

Chapter 5

Case Study

The sample program in appendix A was developed to

provide a case study in the improved error detection

capability of IOGen. Program triangle takes as input the

lengths of the three sides of a triangle in descending

order. It then determines the classification of the

triangle. In this case, the triangle classifications are:

equilateral, isosceles, acute, obtuse, and right. If the

lengths provided to the program are out of order or do not

represent an actual triangle, then the program returns an

invalid indication.

The triangle program has one error purposely inserted

to test the two methods of symbolic execution. The two

methods are embodied in the processing of the IOGen system

before and after the design of Chapter 4. The error in the

program occurs in the third if statement. The statement

should read : If ((A = B) AND (B = C)) Then...

An extraneous greater than side was inserted in the right

simple relational expression. The result is that in some %

cases an isosceles triangle is incorrectly classified as an %

equilateral triangle. A

From the path condition coverage symbolic execution

of the program, six I/O pairs are generated. These I/O

pairs are presented in the appendix along with a set of test

P4

P /1 ~

59

derived from these pairs. One test set and its resulting

output from the program is shown for each I/O pair.

Clearly, it can be seen that it is possible for a rather

innocent appearing error to remain undetected. In this case

the error is not revealed.

The I/O pairs from the extended version of IOGen are

presented next in the appendix. Upon creating branches for

the multiple input conditions on the boolean expressions,

there are 22 I/O pairs generated for the same program. One

interesting item to note that has already been mentioned is

that half of the I/O pairs contain unreachable paths. This

means that input conditions for these eleven pairs are

impossible to satisfy.

From the remaining eleven I/O pairs that are possible

to execute, a set of test cases was developed. These test

cases are shown following the I/O pairs in the appendix.

The second test set reveals the error in the program. For

the inputs of 4, 4, and 3 (which represents an isosceles

triangle) the program indicates that the triangle is

equilateral. This is exactly the error described earlier.

So, by symbolically executing the program based on the

design presented in Chapter 4, the error is now detected.

This case study has illustrated the extra benefit

afforded by extending symbolic execution to cover the

multiple input conditions on boolean expressions. This

60

chapter has outlined the execution of the samrle program

shown in Appendix A for two methods. This case study has

also raised one issue that warrants further analysis and

research in relation to boolean expressions. This issue

pertains to the generation of impossible input conditions

for a large percentage of the I/O pairs. This is dicsussed

in Chapter 6 in more detail.

I

! ,

'B

Chapter 6

Current and Future Research for IOGen

Other topics of research in relation to IOGen presently

being conducted primarily focus on exception handling and

tasking. Exceptions can be subdivided into two categories.

One category is implicit exceptions. These are the

exceptions raised by the Ada language environment when a run I

time error occurs in the execution of an Ada program. Some

of the discussion in Chapter 3 of this thesis touches on

this topic. The other category is explicit exceptions.

These are exceptions defined within the body of the source

program. These two categories of exception handling are the

basis of research for another thesis concerning IOGen.

The notion of applying symbolic execution to the Ada

tasking capability is the focus of another area of research.

Symbolic execution is a static analysis technique. Tasking,

on the other hand, introduces parallel activity for a

program to perform. Needless to say, it remains a very

difficult chore to extend the theoretical and practical

basis of symbolic execution to accomodate the temporal

information in tasking.

One area of future research that occurs as a direct

result of this thesis pei-a.ns to simplifying the path

conditions for many of the nodes in the tree. In generating

nodes for all of the multiple input conditions to boolean

4%
4%

*

62

expressions, several of the resulting paths are logically

impossible to execute. From the sample program and its I/O

pairs in Appendix A, it can be seen that quite a number of

impossible paths are generated. If a mechanism were

designed into IOGen to simplify and identify contradictory

path conditions prior to generating nodes for them, these

branches in the symbolic execution tree could be pruned out

of the structure. This would result in the savings of a

considerable amount of memory and execution time. An

extension that would save time and memory would be a

worthwhile extension.

This chapter has presented a brief summary of two

current areas of research related to the IOGen system. Also,

one area of future research has neen suggested. This future

research could result in the streamlining of the IOGen

system to make it much more time and memory efficient.

N,

.4

- """ ' " ' " "q 5 ") "" " " """ '" "" -"' " " "" € I'

Chapter 7

Conclusion

This thesis addresses extensions to symbolic execution

[8] for the Ada programming language. The detailed design

for a new symbolic execution tree package is presented in

Chapter 4 and it includes the simple Ada statement types of

assignment statements, if then else statements, looping

constructs, case statements, and procedure calls. The

extensions described for accomodating multiple input

conditions on boolear expressions are also built into the

design. The symbolic execution tree package utilizes the

CAIS list management environment and the interactions

between the package and the environment were discussed. The

interaction between the package and the other two components

of the system, ALEX and AYACC, was discussed.

A case study was presented to illustrate the improved

capability of the IOGen system with the design from this

thesis. The case study introduced an Ada program with an

error in it. This error was not detected by the method

IOGen currently utilizes. Under the new design, the error

was detected.

Finally, two areas of current research related to the

same topic were briefly mentioned. Also, one suggestion for

possible future research was described.

This thesis provides a general framework for beginning

',

Cl

4 ' ,

64

the enhancement of the IOGen system from one that only

provides assistance in path coverage testing to one that

assists with multiple condition coverage testing. This

system is still in its early stages of development. Upon

completion of several of the current and future research

issues related to IOGen, it should prove to be an invaluable -
"t,

aid to the testing and validation of Ada programs. D'

4..

References

[1] Ada Joint Program Office. Military Standard Common Ada
Programming Support Environment (APSE) Interface Set
(CAIS). Department of Defense. pp. 419-490, 1986.

[21 G. Booch, Software Engineering With Ada. Menlo Park,
CA: Benjamin/Cummings, 1983.

[3] D. Clark and L. Richardson, "Applications of symbolic
evaluation," in Journal of Systems and Software, vol.
5, no. 1, pp. 15-35, Jan. 1985.

[4] R. Dunn, Software Defect Removal. New York: McGraw-
Hill, 1984.

[51 J. L. Facemire and T. E. Lindquist, "Using an Ada-based
abstract machine description of CAIS to generate
validation tests," in Washington Ada Symposium,
Washington D. C., 1985. r

[61 G. Fisher, "A LALR(1) grammar for ANSI Ada," in ACM Ada
Letters, vol. III, no. 4, pp. 37-50, Jan./Feb. 1984.

[7] S. L. Hantler and J. C. King, "An introduction to
proving the correctness of programs," in ACM Computing
Surveys, vol. 8, no. 3, pp. 331-353, Sept. 1976.

[8] J. R. Jenkins, "Automated generation of input/output
pairs for the CAIS validation test suite," MS Thesis,
Department of Computer Science, Arizona State
University, Tempe, AZ. May. 1986.

[9] J. R. Jenkins and T. E. Lindquist, "Test-case
generation with IOGEN," in IEEE Software, pp. 72-79,
Jan. 1988.

[101 Jian, "ALEX, AYACC," MS Thesis, Department of Computer
Science, Arizona State University, Tempe, AZ. May.
1987.

[111 T. E. Lindquist, "Research in Ada interface validation
and the CAIS operational definition," Research paper,
Department of Computer Science, Arizona State
University, Tempe, AZ. Sept. 1986.

[121 A. D. McGettrick, Program Verification Using Ada. New
York: Cambridge University Press, 1982.

'S

Appendix A

Sample Ada Program and 1/0 Pairs

67

Procedure Triangle Is

A,B,C,D : Integer;

Begin

Get(A);
Get(B);
Get(C);
If ((A >= B) AND (B >= C) AND (A < B+C)) Then

If ((A = B) OR (B = C)) Then
If ((A = B) AND (B >= C)) Then -- error occurs here
Put("Equilateral");

Else
Put("Isosceles");

End If;
Else

A A*A;
B B*B;
C C*C;
D B+C;
If (A /= D) Then

If (A < D) Then
Put("Acute");

Else
Put("Obtuse");

End If;
Else

Put('Right");
End If;

End If; A

Else
Put("Invalid");

End If;

End Triangle;

I

68

1/O Pairs from Path Coverage

II: (A >= B) & (B >= C) & (A < B+C) & ((A = B) OR (B = C))
& (A = B) & (B >= C)

01: Equilateral

12: (A >= B) & (B >= C) & (A < B+C) & ((A = B) OR (B = C))
& !((A = B) & (B >= C))

02: Isosceles

13: (A >= B) & (B >= C) & (A < B+C) & !((A = B) OR (B = C))
& (A*A /= B*B+C*C) & (A*A < B*B+C*C)

03: Acute

14: (A >= B) & (B >= C) & (A < B+C) & !((A = B) OR (B = C))
& (A*A /= B*B+C*C) & !(A*A < B*B+C*C)

04: Obtuse

15: (A >= B) & (B >= C) & (A < B+C) & !((A = B) OR (B = C))
& !(A*A /= B*B+C*C)

05: Right

16: !((A >= B) & (B >= C) & (A < B+C))
06: Invalid

Test Cases

Test Set Actual Output

1. A = 3, B = 3, C = 3 Equilateral
2. A = 4, B = 4, C = 2 Isosceles
3. A = 7, B = 6, C = 5 Acute
4. A = 4, B = 3, C = 2 Obtuse
5. A = 5, B = 4, C = 3 Right
6. A = 9, B = 2, C = 2 Invalid

The error is not detected

w •.

69

I/O Pairs from Multiple Condition Coverage

Ii: (A >= B) & (B >= C) & (A < B+C) & (A = B) & (B C) &
(A = B) & (B >= C)

01: Equilateral

12: (A >= B) & (B >= C) & (A < B+C) & (A = B) & (B C) &
(A = B) & !(B >= C) -- Impossible

02: Isosceles

13: (A >= B) & (B >= C) & (A < B+C) & (A = B) & (B = C) &
!(A = B) & (B >= C) -- Impossible

03: Isosceles

14: (A >= B) & (B >= C) & (A < B+C) & (A = B) & (B = C) &
!(A = B) & !(B >= C) -- Impossible

04: Isosceles
I

IS: (A >= B) & (B >= C) & (A < B+C) & (A B) & !(B C) &
(A = B) & (B >= C)

05: Equilateral

16: (A >= B) & (B >= C) & (A < B+C) & (A B) & !(B C) &
(A = B) & !(B >= C) -- Impossible

06: Isosceles

17: (A >= B) & (B >= C) & (A < B+C) & (A B) & !(B C) &
!(A = B) & (B >= C) -- Impossible

07: Isosceles

I8: (A >= B) & (B >= C) & (A < B+C) & (A B) & !(B C) &
=B) & !(B >= C) -- Impossible

08: Isosceles

19: (A >= B) & (B >= C) & (A < B+C) & !(A B) & (B C) &
(A = B) & (B >= C) -- Impossible

09: Equilateral

I10: (A >= B) & (B >= C) & (A < BfC) & !(A B) & (B C) &
(A = B) & !(B >= C) -- Impossible

010: Isosceles

Ill: (A >= B) & (B >= C) & (A < B+C) & !(A B) & (B C) &
!(A = B) & (B >= C)

O11: Isosceles -U

S.............................
.. -

70

112: (A >= B) & (B >= C) & (A < B+C) & !(A = B) & (B = C) &
!(A = B) & !(B >= C) -- Impossible

012: Isosceles

113: (A >= B) & (B >= C) & (A < B+C) & !(A = B) & !(B = C) &
(A*A /= B*B+C*C) & (A*A < B*B+C*C)

013: Acute

114: (A >= B) & (B >= C) & (A < B+C) & !(A = B) & !(B = C) &
(A*A /= B*B+C*C) & !(A*A < B*B+C*C)

014: Obtuse

115: (A >= B) & (B >= C) & (A < B+C) & !(A = B) & !(B C) &
!(A*A /= B*B+C*C) & !(A*A < B*B+C*C)

015: Right

116: (A >= B) & (B >= C) & !(A < B+C)
016: Invalid

117: (A >= B) & !(B >= C) & (A < B+C)
017: Invalid

118: (A >= B) & !(B >= C) & !(A < B+C)
018: Invalid

119: !(A >= B) & (B >= C) & (A < B+C)
019: Invalid

120: !(A >= B) & (B >= C) & !(A < B+C) -- Impossible
020: Invalid

121: !(A >= B) & !(B >= C) & (A < B+C)
021: Invalid

122: !(A >= B) & !(B >= C) & !(A < B+C) -- Impossible
022: Invalid

6r.

71

Test Cases

Test Sets Actual Output

1. A = 3, B = 3, C = 3 Equilateral
2. A = 4, B = 4, C = 3 Equilateral - NO!
3. A = 4, B = 3, C = 3 Isosceles
4. A = 7, B = 6, C = 5 Acute
5. A = 4, B = 3, C = 2 Obtuse
6. A = 5, B = 4, C = 3 Right
7. A = 4, B = 3, C = 2 Invalid
8. A = 6, B = 4, C = 5 Invalid
9. A = 4, B = 2, C = 3 Invalid

10. A = 2, B = 4, C = 3 Invalid
11. A = 2, B = 3, C = 4 Invalid

The error is detected.

pm

p4

I

N .- - - - - - - - - - - -"

